

School District of Marshfield Course Syllabus

Course Name: Pre-Algebra Length of Course: 1 Year Credit: 1

Program Goal:

The School District of Marshfield Mathematics Program will prepare students for college and career in the 21st century by ensuring *all* students learn based on skills and knowledge needed to succeed in post-secondary education/training, career, and life. The 4K through High School Mathematics curriculum is designed to support every student in achieving success. Students will be placed in to the driver's seat. Innovative educators will tailor instruction to student need through engaging learning activities and relevant assessment.

Course Description:

The class is self-paced using a computer program called Accelerated Math from Renaissance Learning. A student must master all objectives to successfully pass the course. Students will develop skills in Number Sense and Operation, Relationships with Quantities, Reasoning with Equations, Algebra Concepts, Linear and Exponential Relationships, Geometry and Measurement, Congruence, Proof and Construction, Connecting Algebra and Geometry through Coordinates, Data Analysis, Statistics and Probability.

NOTE: A calculator is required for this course. **PREREQUISITES**: Instructor's recommendation.

Standards:				
Wisconsin Standards for Mathematical Practice (MP)				
MP: 1, 2, 3, 4, 5, 6, 7, 8	 Make sense of problems and persevere in solving them. Reason abstractly and quantitatively. Construct viable arguments and critique the reasoning of others. Model with mathematics. Use appropriate tools strategically. Attend to precision. Look for and make use of structure. Look for and express regularity in repeated reasoning. 			
Wisconsin Standards for Mathematic				
	s- Number and Quantity			
The Real Number System (N-RN) Use properties of rational and irrational numbers. N-RN: 3	3. Explain why the sum or product of two rational numbers is rational; that the sum of a rational number and an irrational number is irrational; and that the product of a nonzero rational number and an irrational number is irrational.			
Quantities (N-Q)	indional.			
Reason quantitatively and use units to solve problems. N-Q: 1	1. Use units as a way to understand problems and to guide the solution of multi-step problems; choose and interpret units consistently in formulas; choose and interpret the scale and the origin in graphs and data displays.			
Wisconsin Standards for Mathematic	s- Algebra			
Seeing Structure in Expressions (A-SSE)				
Interpret the structure of expressions. A-SSE: 1a	 Interpret expressions that represent a quantity in terms of its context. Interpret parts of an expression, such as terms, factors, and coefficients. 			
Arithmetic with Polynomials and Ration				
Perform arithmetic operations on polynomials. A-APR: 1	1. Understand that polynomials form a system analogous to the integers, namely, they are closed under the operations of addition, subtraction, and multiplication; add, subtract, and multiply polynomials.			
Creating Equations (A-CED)				
Create equations that describe numbers or relationships. A-CED: 1, 2, 4	 Create equations and inequalities in one variable and use them to solve problems. <i>Include equations arising</i> <i>from linear and quadratic functions, and simple rational</i> <i>and exponential functions.</i> Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales. Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations. For example, rearrange Ohm's law V = IR to highlight 			

Reasoning with Equations and Inequalit	Reasoning with Equations and Inequalities (A-REI)				
Understand solving equations as a	1. Explain each step in solving a simple equation as				
process of reasoning and explain the	following from the equality of numbers asserted at the				
reasoning.	previous step, starting from the assumption that the				
A-REI: 1	original equation has a solution. Construct a viable				
	argument to justify a solution method.				
Solve equations and inequalities in one	3. Solve linear equations and inequalities in one variable,				
variable.	including equations with coefficients represented by				
A-REI: 3	letters.				
Wisconsin Standards for Mathematics- Functions					
Interpreting Functions (F-IF)					
Understand the concept of a function	1. Understand that a function from one set (called the				
and use function notation.	domain) to another set (called the range) assigns to each				
F-IF: 1, 2	element of the domain exactly one element of the range. If				
	f is a function and x is an element of its domain, then $f(x)$				
	denotes the output of f corresponding to the input x . The				
	graph of <i>f</i> is the graph of the equation $y = f(x)$.				
	2. Use function notation, evaluate functions for inputs in				
	their domains, and interpret statements that use function				
	notation in terms of a context.				
Interpret functions that arise in	4. For a function that models a relationship between two				
applications in terms of the context.	quantities, interpret key features of graphs and tables in				
F-IF: 4, 5, 6	terms of the quantities, and sketch graphs showing key				
	features given a verbal description of the relationship. <i>Key</i>				
	features include: intercepts; intervals where the function				
	is increasing, decreasing, positive, or negative; relative				
	maximums and minimums; symmetries; end behavior; and				
	periodicity.				
	5. Relate the domain of a function to its graph and, where				
	applicable, to the quantitative relationship it describes.				
	For example, if the function $h(n)$ gives the number of				
	person-hours it takes to assemble n engines in a factory,				
	then the positive integers would be an appropriate domain				
	for the function.				
	6. Calculate and interpret the average rate of change of a				
	function (presented symbolically or as a table) over a				
	specified interval. Estimate the rate of change from a				
	graph.				
Analyze functions using different	7. Graph functions expressed symbolically and show key				
representations.	features of the graph, by hand in simple cases and using				
F-IF: 7a, 7e, 9	technology for more complicated cases.				
	a. Graph linear and quadratic functions and show				
	intercepts, maxima, and minima.				
	e. Graph exponential and logarithmic functions,				
	showing intercepts and end behavior, and				
	trigonometric functions, showing period, midline,				
	and amplitude.				
	9. Compare properties of two functions each represented				
	in a different way (algebraically, graphically, numerically				
	in tables, or by verbal descriptions). For example, given a				

	aranh of one guadratic function and an algebraic			
	graph of one quadratic function and an algebraic expression for another, say which has the larger			
	expression for another, say which has the larger maximum.			
Building Functions (F-BF)				
Build a function that models a	1. Write a function that describes a relationship between			
relationship between two quantities.	1. Write a function that describes a relationship between			
F-BF: 1a, 1b, 2	two quantities.			
1°-D1°. 1a, 10, 2	a. Determine an explicit expression, a recursive process, or steps for calculation from a context.			
	b. Combine standard function types using arithmetic			
	operations. For example, build a function that			
	models the temperature of a cooling body by			
	adding a constant function to a decaying			
	exponential, and relate these functions to the			
	model.			
	2. Write arithmetic and geometric sequences both			
	recursively and with an explicit formula, use them to			
	model situations, and translate between the two forms.			
Build new functions from existing	3. Identify the effect on the graph of replacing $f(x)$ by $f(x)$			
functions.	+k, k f(x), f(kx), and f(x + k) for specific values of k (both			
F-BF: 3	positive and negative); find the value of <i>k</i> given the			
	graphs. Experiment with cases and illustrate an			
	explanation of the effects on the graph using technology.			
	Include recognizing even and odd functions from their			
	graphs and algebraic expressions for them.			
Linear, Quadratic and Exponential Mod				
Construct and compare linear models	2. Construct linear and exponential functions, including			
and exponential models and solve	arithmetic and geometric sequences, given a graph, a			
problems.	description of a relationship, or two input-output pairs			
F-LE: 2	(including reading these from a table).			
Interpret expressions for functions in terms of the situation they model	5. Interpret the parameters in a linear or exponential function in terms of a context.			
terms of the situation they model. F-LE: 5	function in terms of a context.			
Wisconsin Standards for Mathematic				
Similarity, Right Triangles and Trigonor				
Prove theorems involving similarity.	5. Use congruence and similarity criteria for triangles to			
G-SRT: 5	solve problems and to prove relationships in geometric			
Define trigenemetric	figures.			
Define trigonometric ratios and solve	8. Use the Pythagorean Theorem to solve right triangles in			
problems involving right triangles. G-SRT: 8	applied problems.			
	quations (C-CPF)			
Expressing Geometric Properties with E	5. Prove the slope criteria for parallel and perpendicular			
Use coordinates to prove simple geometric theorems algebraically.	lines and use them to solve geometric problems (e.g., find			
G-GPE: 5, 7	the equation of a line parallel or perpendicular to a given			
0-01 E. J, /	line that passes through a given point).			
	7. Use coordinates to compute perimeters of polygons and			
	areas of triangles and rectangles, e.g., using the distance			
	formula.			

Geometric Measurement and Dimension	(G-GMD)				
Explain volume formulas and use them	3. Use volume formulas for cylinders, pyramids, cones,				
to solve problems.	and spheres to solve problems.				
G-GMD: 3					
Visualize relationships between two-	4. Identify the shapes of two-dimensional cross-sections				
dimensional and three-dimensional	of three dimensional objects, and identify three-				
objects.	dimensional objects generated by rotations of two-				
G-GMD: 4	dimensional objects.				
Wisconsin Standards for Mathematic					
Interpreting Categorical and Quantitativ					
Summarize, represent, and interpret	1. Represent data with plots on the real number line (dot				
data on a single count or measurement	plots, histograms, and box plots).				
variable.	2. Use statistics appropriate to the shape of the data				
S-ID: 1, 2, 3	distribution to compare center (median, mean) and spread				
5-11 , 1, 2, 5	(interquartile range) of two or more different data sets.				
	3. Interpret differences in shape, center, and spread in the				
	context of the data sets, accounting for possible effects of				
C	extreme data points (outliers).				
Summarize, represent, and interpret	5. Summarize categorical data for two categories in two-				
data on two categorical and	way frequency tables. Interpret relative frequencies in the				
quantitative variables.	context of the data (including joint, marginal, and				
S-ID: 5, 6a, 6b, 6c	conditional relative frequencies). Recognize possible				
	associations and trends in the data.				
	6. Represent data on two quantitative variables on a				
	scatter plot, and describe how the variables are related.				
	a. Fit a function to the data; use functions fitted to				
	data to solve problems in the context of the data.				
	Use given functions or choose a function				
	suggested by the context. Emphasize linear and				
	exponential models.				
	b. Informally assess the fit of a function by plotting				
	and analyzing residuals.				
	c. Fit a linear function for a scatter plot that suggests				
	a linear association.				
Interpret linear models.	7. Interpret the slope (rate of change) and the intercept				
S-ID: 7	(constant term) of a linear model in the context of the				
	data.				
Making Inferences and Justifying Conclu	usions (S-IC)				
Understand and evaluate random	1. Understand statistics as a process for making inferences				
processes underlying statistical	about population parameters based on a random sample				
experiments.	from that population.				
S-IC: 1					
Make inferences and justify	3. Recognize the purposes of and differences among				
conclusions from sample surveys,	sample surveys, experiments, and observational studies;				
experiments, and observational studies.	explain how randomization relates to each.				
S-IC: 3					
Conditional Probability and the Rules of	Probability (S-CP)				
Understand independence and	1. Describe events as subsets of a sample space (the set of				
conditional probability and use them to	outcomes) using characteristics (or categories) of the				
interpret data.					
··· •	1				

S-CP: 1, 2	 outcomes, or as unions, intersections, or complements of other events ("or," "and," "not"). 2. Understand that two events A and B are independent if the probability of A and B occurring together is the product of their probabilities, and use this characterization
	to determine if they are independent.

Key Vocabulary:					
Expression	Ratio	Pythagorean theorem	Similar figures		
Equation	Unit rate	Square root	Congruent figures		
Like-terms	Proportion	Monomial	Slant height		
Exponents	Scale	Interest	Diameter		
Absolute value	Dilation	Linear equation	Radius		
Integer	Function	Slope	Volume		
Rational number	Evaluate	Slope-intercept form	Surface area		
Irrational number	Percent	Compound interest	Cross Section		
Parallel lines	Perpendicular lines	Cartesian Plane	Scatter Plot		
Units of Quantity	Linear Equations	Linear Inequalities	Formula		
Exponential Equations	Function Notation	Linear Functions	Recursive		
Exponential Functions	Domain	Range	Arithmetic Sequence		
Geometric Sequence	Explicit	Histogram	Line of best fit		
Translation	Rotation	Reflection	Congruent Triangles		
Vertex	Venn Diagram	Sample Population	Probability		

Topics/Content Outline- Units and Themes:

Quarter 1:

- Number Sense and Operation
- Relationships with Quantities
- Reasoning with Equations

Quarter 2:

- Algebra Concepts
- Linear and Exponential Relationships

Quarter 3:

- Geometry and Measurement
- Congruence, Proof, and Construction

Quarter 4:

- Connecting Algebra and Geometry Through Coordinates
- Data Analysis, Statistics and Probability

Primary Resource(s): Renaissance Learning - Accelerated Math & STAR Math assessment